期刊介绍
期刊导读
- 12/13科技论文论文格式排版(科学论文排版)
- 12/09科技论文论文题目(科技论文的题目)
- 12/07科技论文具有哪些特征
- 10/22为芦笋种植“开处方”,潍坊的科技特派员把论
- 10/13喜讯!青岛地质院何鹏被授予“优秀科技工作者
「AI+磁共振成像」研究进入爆发期:沈定刚教授
SHARIF, M. I., LI, J. P., KHAN, M. A. & SALEEM, M. A. 2020. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognition Letters, 129, 181-189.
图6 深度学习时代下的磁共振成像领域共被引聚类分析(2019-2020)
AVENDI, M. R., KHERADVAR, A. & JAFARKHANI, H. 2016. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical Image Analysis, 30, 108-119.
图11 帝国理工学院产出论文的主要合作机构

NAIR, T., PRECUP, D., ARNOLD, D. L. & ARBEL, T. 2020. Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation. Medical Image Analysis, 59, 10.

2013-2015年文章数量还处于零星增长阶段,2016-2017年发文量增长明显,但仍相对为低位,而从2018年起的近五年里则呈现了爆发增长的趋势,并且增长率越来越高。
BERNARD, O., LALANDE, A., ZOTTI, C., et al. 2018. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? Ieee Transactions on Medical Imaging, 37, 2514-2525.

DENG, Y., REN, Z. Q., KONG, Y. Y., BAO, F. & DAI, Q. H. 2017. A Hierarchical Fused Fuzzy Deep Neural Network for Data Classification. Ieee Transactions on Fuzzy Systems, 25, 1006-1012.
美国埃默里大学的Yang Xiaofeng副教授,Liu Tian副教授、Wang Tonghe助理教授、Lei Yang老师等都较大程度地贡献了该领域的论文产出。
表1 深度学习时代下的磁共振成像领域主要的SCI论文产出机构及影响力
AHMADI, M., SHARIFI, A., FARD, M. J. & SOLEIMANI, N. Detection of brain lesion location in MRI images using convolutional neural network and robust PCA. International Journal of Neuroscience, 12.
Cluster 1 #0 prostate cancer前列腺癌
为了解该领域近年的研究中主要的主题分布情况,该报告以上文中提及的数据源为基础,通过图谱构建工具VOSviewer提取了论文的关键词,并设置了出现频次在10以上的关键词集合通过Co-occurrence共现网络计算获得了图2。
磁共振成像(Magnetic Resonance Imaging, MRI)是现今临床医学诊断的重要手段之一,但如何提高成像技术、应用场景等成为该领域近来的热门研究问题。


SAJJAD, M., KHAN, S., MUHAMMAD, K., et al. 2019. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science, 30, 174-182.

Cluster 6 #5 unified multi-channel classification统一多通道分类
HAMMERNIK, K., KLATZER, T., KOBLER, E., et al. 2018. Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine, 79, 3055-3071.

AGGARWAL, H. K., MANI, M. P. & JACOB, M. 2019. MoDL: Model-Based Deep Learning Architecture for Inverse Problems. Ieee Transactions on Medical Imaging, 38, 394-405.
QUAN, T. M., NGUYEN-DUC, T. & JEONG, W. K. 2018. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss. Ieee Transactions on Medical Imaging, 37, 1488-1497.
图13 复旦大学产出论文的主要合作机构
YANG, G., YU, S. M., DONG, H., SLABAUGH, G., et al. 2018. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. Ieee Transactions on Medical Imaging, 37, 1310-1321.
LEYNES, A. P., YANG, J., WIESINGER, F., et al. 2018. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. Journal of Nuclear Medicine, 59, 852-858.
QIN, C., SCHLEMPER, J., CABALLERO, J., et al. 2019. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction. Ieee Transactions on Medical Imaging, 38, 280-290.
图5 深度学习时代下的磁共振成像领域共被引聚类分析(2017-2018)
COLE, J. H., POUDEL, R. P. K., TSAGKRASOULIS, D., et al. 2017. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage, 163, 115-124.
文章来源:《中国科技论文》 网址: http://www.zgkjlwzz.cn/zonghexinwen/2022/0706/848.html