期刊介绍
期刊导读
- 12/13科技论文论文格式排版(科学论文排版)
- 12/09科技论文论文题目(科技论文的题目)
- 12/07科技论文具有哪些特征
- 10/22为芦笋种植“开处方”,潍坊的科技特派员把论
- 10/13喜讯!青岛地质院何鹏被授予“优秀科技工作者
OPPO 在CVPR2022取得佳绩:7篇论文入选、8项挑战赛
对此,OPPO研究院联合西安电子科技大学李雷达教授,开创性地提出了带条件的PIAA算法(Conditional Personalized Image Aesthetics Assessment),首次从“用户主观偏好与图像美学相互作用,如何产生个性化品味”角度出发对AI模型进行优化。该算法可以基于不同用户画像信息实现个性化的审美评价,可以为用户在相册、相机、互联网内容推荐等场景中打造个性化体验,具有广阔的应用前景。
随该算法一并提出的带有丰富属性标注的个性化美学评价数据集也已宣布开源,为业界在个性化美学评价领域的研究提供了有价值的研究数据,目前该数据集已收到多家研究机构及高校的关注和问询。
在“微笑前行”品牌使命的指引下,OPPO也在和业界伙伴一道,不断推动人工智能(AI)技术从实验室真正走向生活。2021年12月,OPPO发布了首款自研影像专用NPU——马里亚纳X,具备强大算力、能效比和计算速度,能够让AI算法的运行速度达到空前水平,为用户解决手机长期难以解决的夜景视频画质问题。此外,基于强大的底层AI能力,OPPO也发布了包括CybeReal全时空间计算AR应用、OPPO Air Glass、Omoji等创新产品及功能,希望尽早创造更真实的数字新世界,为用户带来现实物理世界与虚拟数字世界的融合体验。
从手机摄影到无人驾驶,深度学习模型走进越来越多行业。但深度学习非常依赖大数据和大算力,学习成本高,这也给前沿AI技术的商用落地带来了挑战。神经网络架构搜索技术(NAS)可自动发掘神经网络的最优架构,降低对人工经验和背景知识的依赖,让AI也可以实现“自主学习”。在比赛中,OPPO研究人员通过优化训练超网过程中的模型参数遗忘及不公平的梯度下降问题,针对“继承”超网参数的个子网络,有效地提高了子网络在性能及性能排序上的一致性,最终取得了第二名的好成绩。
快速突破的成果来源于OPPO在AI领域的不懈投入。自2015年起,OPPO在人工智能领域展开投入,成立相关研发团队,聚焦语言语义、计算机视觉等领域。2020年初,OPPO研究院正式成立智能感知与交互研究院,进一步深化OPPO对人工智能前沿科技的探索。目前,OPPO在AI领域的全球专利申请超过2650件,广泛覆盖计算机视觉、语音技术、自然语言处理、机器学习等领域。
在同期举办的挑战赛中,OPPO也表现出色,在八大赛项中斩获佳绩。包括目前行业关注的神经网络架构搜索技术(NAS)赛道、足球行为检测(SoccerNet Action Spotting)赛道、足球回放定位(SoccerNet Replay Grounding)赛道、时序动作定位(ActivityNet temporal localization)赛道、大尺度视频目标分割挑战赛(The 4th Large-scale Video Object Segmentation Challenge)、ACDC挑战赛(the ACDC Challenge 2022 on semantic segmentation in adverse visual conditions)和运动预测挑战赛(WAD Argoverse2 Motion Forecasting)。
今年是OPPO参加CVPR的第三年,OPPO在收录论文数量及挑战赛成绩保持上升的同时,研究领域也从人脸识别等应用领域向更基础的技术方向转移。
以创新推动商用,OPPO希望尽早让人们享受AI带来的便利
不同模态数据的特性各不相同,像文字、语言这样的信息概括性极强,而图像往往包含大量细节。在多模态数据下,能够在模态间建立起有效交互对于AI来说是一件十分有挑战性的事情。OPPO研究人员基于CLIP模型提出了全新CRIS框架,使得AI能够更加细粒度地理解图像与文本两种模态的数据。即使输入包含多重信息的文本描述,该框架也能够准确聚焦到对应的图像区域,显示出强大的细粒度跨模态匹配能力。
本次CVPR2022上,OPPO共有7篇CVPR入选论文,涵盖多模态信息交互、三维人体重建、个性化图像美学评价、知识蒸馏等多个研究领域。
同样,在近期热门的三维人体重建领域,OPPO研究院通过改进NeRF创新的动态角色建模方法,在业界首次实现了自动为宽松着装人体创建数字分身的工作。该建模方法仅通过分析摄像头所拍摄的RGB视频,就可以1:1精准还原人物动态细节,甚至包括衣服细小logo或纹理细节。衣服的建模还原一直是业界挑战较大的领域之一,因为人体姿态发生变化的同时衣服物料的形变非常复杂,从而导致AI难以解算像“裙摆”这样的部位形变。此举可有效降低三维人体重建的门槛,为在线虚拟试装购物、AI健身乃至VR/AR虚拟世界的真正落地提供良好的技术基础。
文章来源:《中国科技论文》 网址: http://www.zgkjlwzz.cn/zonghexinwen/2022/0623/842.html